Introduction

Our primary goal is to describe a standard solution procedure for a certain class of optimal control problems. We restrict our consideration to the case where the state of a system is defined by the Cauchy problem for a general first order ordinary differential equation. A function with values in a given interval is the control. An integral functional represents the optimality criterion.
We shall deduce the necessary optimality conditions in the form of the maximum principle. As a result, we shall obtain a certain problem of finding a relative extremum, its parameters being represented by the function of the system state and the solution of the adjoint system. We apply the method of successive approximations to find an approximate solution of the problem. As an example, we consider a very simple optimization problem such that the algorithm converges to its unique optimal control. Then this method will be applied to much more complicated problems with fixed final state (see Example 4) and an isoperimetric condition (see Example 7).
In the examples below, we shall see various unfavorable situations caused by substantial difficulties in solving the optimization problems described above. In particular, these are situations where application of standard methods does not give immediate results. However, experience and bet​ter understanding can be gained only while solving "bad" problems. Easy success in solving "good" problems is hardly beneficial in this respect.
1.   PROBLEM FORMULATION

First of all, a problem of optimal control involves a mathematical model of the process in question, which is usually represented by some equation or a system of equations for the unknown state functions. Since the process in question is assumed to be controllable, the state equation must include a parameter called the control (which may be a number, a vector, a function, a collection of functions, etc.) selected by the researcher. Thus, the math​ematical model of a controllable system in the general case be described by the operator state equation
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Here A is an operator, u is the control, and 
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 is the function of the system state corresponding to the given control.
In practice, the choice of the control is usually denned by certain tech​nical, technological, or economical conditions. For this reason, the control is assumed to belong to a set of admissible controls U. By choosing an admissible control we determine a specific way of process development. Let a functional 
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 represent the optimality criterion for the selected control. Then the optimal control problem is written as follows:
Problem P0. Find a control 
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 on U.
Being formulated in such a general form, this problem obviously cannot be solved. We shall essentially simplify it, but it will still define a sufficiently large class of applied optimal control problems that are far from being trivial, as we shall see below.
Consider a system described by the differential equation
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with the initial condition
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Here 
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 is the function of the system state, 
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 is the control, f is a known function, 
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 is the initial state of the system. We assume that the set of admissible controls is
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where 
[image: image12.wmf]1

u

 and 
[image: image13.wmf]2

u

 are known values, which may be 
[image: image14.wmf]¥

-

 and 
[image: image15.wmf]¥

, respectively. Solving the Cauchy problem (1), (2) for some admissible value u, we can determine the evolution of the system, i.e., the function of the system state at every instant. The integral functional

[image: image16.wmf](

)

0

(,),(),() 

T

IIuxgtutxtdt

==

ò


will represent the optimality criterion, where g is a known function. If the system state is uniquely determined by the control, then the optimality criterion will depend only on the control. As a result, we obtain the following formulation.
Problem P. Find a function 
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 that minimizes the functional f on U.
Our purpose is now to develop a method of solution for the above prob​lem.
2.   THE MAXIMUM PRINCIPLE

In accordance with the method of Lagrange multipliers, we introduce the functional
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Evidently, if the function x satisfies equation (1), then the functionals L and I coincide for any function p. In this situation we may try to pass from the original problem of finding a relative extremum to the problem of mini​mizing the functional L, which contains (in a certain sense) the information about the system conditions in the form (1).
We set
                            
[image: image19.wmf](,,)(,)(,).

Huxpfuxgux

=-

                               (3)
Then the functional L becomes as follows:
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Suppose that u is the optimal control, i.e.,
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where x and y are solutions to problem (1), (2) for the controls u and v, respectively. Since the functionals in question coincide on the set of solutions of equation (1), we can reduce inequality (4) to the relation
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We now determine the increment of L

[image: image23.wmf][

]

00

()() ()0 , ,

TT

L

рtуtxtdtHdtvUр

D=--D³"Î"

òò

&&


where
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The known functions f and g in the problem formulation are assumed to be sufficiently smooth. Putting 
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 and using the Taylor series expansion, we obtain
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Here 
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As a result, inequality (5) is reduced to the form
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where 
[image: image32.wmf]u

H

D

 is the increment of H with respect to the control, i.e.,
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and the remainder term η is defined by the formula
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Remark 1. In the following examples, the explicit form of the remainder term will be of particular interest.
Integrating by parts, we find the value of the first integral in (6):
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We take into account that the initial state of the system is equal to xo for every control. Thus, inequality (6) becomes as follows:
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We now try to make inequality (8) as simple as possible by an appropriate choice of the arbitrary function p. The obvious solution is to make the second and the third terms on the left-hand side vanish. Thus, p must satisfy the equation 
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with the condition
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Relations (9), (10) are called the adjoint system. As a result, inequality (8) takes the form
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We take a function v sufficiently close to the optimal control u. If the solution of the problem (1), (2) continuously depends on the control, then the increment 
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 of the function of the system state is sufficiently small. Then the first and the second terms in the left-hand side of (11) will be of the first and the second infinitesimal order, respectively. In this case, we can assume that the sign of the left-hand side is defined by the sign of its first term. Thus, for v sufficiently close to the optimal control, we have
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Let (  be a point in the interval (0,T) and w be an admissible control. We now define the following control (see Figure 1):
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This is the so-called spiky variation of the control u.
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Figure 1. The spiky variation of the control u
The function v belongs to U and can be as close to u as desired for ε sufficiently small. Then equality (12) holds for this control. Taking into account that the controls u and v coincide outside the interval 
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Dividing the left-hand side of the foregoing inequality by 2ε, passing to the limit as 
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, and using the Mean-Value Theorem, we obtain
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Since the point τ and the control w are arbitrary, we conclude that
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As a result, we obtain the so-called necessary optimality condition for a control.
Theorem 1 [The Maximum Principle]. For the control u to be the optimal control problem, it is necessary that it satisfy the maximum condition (13), where x is the corresponding solution of the prob​lem (1), (2) and p is a solution of the adjoint system (9), (10).
Remark 2. A perfectly rigorous formulation of the hypotheses of this theorem is not our goal. We are now interested only in the general pattern of arguments that lead to the maximum principle and, mainly, in its practical application. Such an approach is justified because it is usually impossible to provide a complete rigorous analysis of an optimization problem in prac​tice. We need to seek a solution in spite of the problems with analytical methods. Indeed, the main causes of various unexpected problems to arise later are the lack of rigor in formulation and the ignored restrictions ensur​ing that the maximum principle holds. In fact, all the examples considered below represent certain problems caused by formal application of standard optimization methods.
Following the maximum principle, in order to solve the optimization problem, we must find the functions u, x, p from relations (1), (2), (9), (10), (13). The maximum principle is effective in this case because of our transition from the problem of minimization of the original functional to the problem of finding the relative extremum of the function H, which explicitly depends on the control. The price of this transition is the introduction of the new unknown function p.
Remark 3. If the optimality criterion included the final value of the function of the system state, then the boundary condition in the adjoint system would not be homogeneous, and the remainder term would have an additional summand involving the square of the increment of the system state at the final instant.
Remark 4. In Examples 4, 7, and 8, we consider optimal control prob​lems with fixed final state, for which the system state is specified in both the initial and final instants. We show that there are no boundary conditions for the adjoint equation in this case. In Example 7, we establish the maxi​mum principle for the optimal control problem with an additional condition imposed on the system state (isoperimetric condition).
The following example illustrates the potential of the maximum principle.
3.   EXAMPLE

We now consider a simple example that helps to get a better understanding of the maximum principle and demonstrate its effectiveness. Suppose that the state of a system is described by the conditions
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Let the set of admissible controls be
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Consider the following optimization problem.
Problem 0. Find a function u that minimizes the functional I on U. 
To bring this problem to the standard form, we put
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Following formula (3), we introduce the function
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Then the adjoint system (9), (10) becomes as follows:
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and the maximum condition (12) is
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Thus, we have three relations (14) – (16) for three unknown functions u, x, and p. First, we solve problem (16) to find the relative extremum of H. Equating its derivative to zero, we obtain the stationary state condition
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which implies that H has a unique point of local extremum (the stationary point) u = p. Since the second-order derivative of H is negative, this is a maximum point.
Remark 5. Example 4 deals with an interesting situation where the second-order derivative of H is negative and the stationary point is a lo​cal maximum that is not a global one and therefore does not satisfy the maximum condition.
The obtained value corresponds to the absolute extremum of the func​tion in question. However, the position of the point 
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 relative to the admissible segment [-1,1]  may be arbitrary (see Figure 2).
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Figure 2. Relative maximum of the function H

For 
[image: image59.wmf]1

p

<
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 is admissible; therefore, it is a solution of the maximum condi​tion. Taking into account that p depends on time, we obtain the formula
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(17)
Formula (17) gives the solution of the maximum condition (16) and 
al​lows us to find the control if the function p is known {see Figure 3).
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Figure 3. Solution of the maximum condition for a known value of p
Substituting this value into (14), we obtain the system (14), (15) for the unknown functions x and p. If it turned out to be a Cauchy problem for two (possibly nonlinear) differential equations, then the solution would be easy. There are many simple and reliable numerical algorithms for solving such problems. However, the boundary conditions for x and p are specified at different instants of time. In this case, we can solve the system using an iterative method.
4.  APPROXIMATE SOLUTION OF THE OPTIMALITY CONDITIONS

The differential equations in (14) and (15) cannot be solved in parallel, since the boundary conditions for the state function and the solution of the adjoint system are specified at the opposite instants of time. Therefore, these relations should be treated sequentially.

Using the method of successive approximations, we find the function 
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for the known control 
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to find the function 
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Remark 6. In addition to the optimality conditions, gradient methods are also used for solving extremum problems. The idea of these methods is that every approximation of the control is obtained from the previous one by the shift in the direction of the gradient of the functional. In the problems with constraints, in addition, the result is projected onto the set of admissible controls. If we use the gradient-projection method in the problem under consideration, then the resulting iteration formula will coincide with (20). In particular, as follows from Figure 3, the transition from the known function p to the unknown u is made using the procedure of projection onto the segment of admissible values of the control.
We now try to apply the method of successive approximations directly to the system of optimality conditions. Let 
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 be an initial approximation. It must belong to the set of admissible controls, i.e.,
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Integrating this inequality from aero to an arbitrary t and using (18), we have
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Further integration of the obtained relation from t to unity (the terminal point) yields 
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Since all values of 
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 belong to the segment [-1,1], following (20), we find the next approximation of the control 
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Integrating this inequality, we get
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Further integration of the obtained inequality from t to unity gives
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Then (20) implies that the next approximation of the control satisfies the inequality
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Repeating the above calculations for the next iteration, we obtain

[image: image84.wmf]3

1/81/8, [1,1].

()

ut

t

-££Î-


In the general case, for the kth iteration we have the following estimate: 
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Thus, we have established the convergence 
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The obtained results show that the sequence 
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 constructed using the method of successive approximations converges to the function u*, which is identically equal to zero, for any initial approximation of the control chosen from U.
A natural question arises of whether u* will be a solution of the consid​ered optimal control problem? To answer this question, we return to the formulation of the problem. Since the integrand in the functional to be minimized is nonnegative, we have 
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 0 for every admissible control. Zero value of the functional is achieved if and only if
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The zero control is admissible. Moreover, according to problem (14), it defines the state function, which is also identical zero. Thus, it is the admis​sible control u* that makes the functional vanish; furthermore, the functional does not assume negative values. Therefore, this optimal control problem has a unique solution, which is the one we found as a result of approximate solution of the optimality conditions.

Remark 7. The obvious goal in this case was to verify the effectiveness of the maximum principle, rather than solve a specific optimization problem (which is quite simple).
Remark 8. Later, we shall return to the problem considered above. Theoretical results established below will be applied to this problem, for it has truly remarkable properties. Further investigation will reveal where these properties stem from.
The method of successive approximations is also applicable for solving the system of optimally conditions (1), (2), (9), (10), (13) for the general extremum problem. This involves successive solution of the state equation, the adjoint problem, and the optimality condition (the maximum condition).
Naturally, the algorithm does not necessarily converge in the general case; however, approximate solution of the problem is still possible.
Remark 9. It is not to be supposed that an algorithm that converges very well to the "right solution" can allow the determination of the optimal control with accuracy as high as desired. As a rule, differential equations are solved using approximation methods. Thus, the iteration error introduced by the initial approximation is aggravated by the equations approximation error, which is of entirely different kind. The iteration error is usually the governing factor at the initial stage of the algorithm. As the algorithm converges, the control approximation tends to the optimal control and the iteration error decreases. However, the equations approximation error re​mains constant unless the method of solution of the differential equations changes in the process of calculations. The approximation error will start to play the decisive role at some point in the solution process, and there is no way to deal with this in our method. Thus, the algorithm will fail sooner or later, as the functional will start to increase unexpectedly. Then each new approximation of the control will be worse than the previous one, causing the iteration error to increase. This error will become predominant again, which will cause the algorithm to minimize the functional until the iteration error becomes less than the approximation error. As a result, the algorithm will be oscillating. In general, it is possible to overcome this obstacle and achieve greater accuracy by gradually improving the approximation of the differential equations.
Summing up the results of our analysis, we see that, on one hand, the solution procedure for any given optimal control problem is hardly simple. On the other hand, in general, it is possible to achieve sufficiently high accuracy with the help of the technique described above. Unfortunately, it is not always the case. The purpose of this book is to demonstrate different kinds of unforeseen obstacles that arise in solving optimal control problems (even not particularly difficult ones). We shall try to understand the nature of those obstacles and find the ways to overcome them.
SUMMARY

The obtained results lead us to the following conclusions.
1. The optimal control problem consists of the state equation for the control, the set of admissible controls, and the optimality criterion represented by a functional defined on the set of admissible controls.
2. To solve the optimal control problem, the optimality condition in the form of the maximum principle can be used.
3. The maximum principle is the problem of finding a relative extremum for a function H which includes the state function and the solution of the adjoint system as parameters.
4. The first step in the solution of the system of optimality conditions is to express the control from the maximum condition for H in terms of the other unknown quantities.
5. The major difficulty in solving the optimality conditions is that the boundary conditions for the state function and the solution of the adjoint system are specified at the opposite instances of time.
6. The complete system of optimality conditions can be solved using an iterative procedure, namely, the method of successive approximations.
7. With the method of successive approximations used for solving the system of the optimality conditions, it is possible to find the solution of the optimal control problem with sufficiently high accuracy.
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